The largest interval lying in $\left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)$ for which the function, $f\left( x \right) = {4^{ - {x^2}}} + {\cos ^{ - 1}}\left( {\frac{x}{2} - 1} \right) + \log \left( {\cos x} \right)$ is defined is
$\left[ { - \frac{\pi }{4},\frac{\pi }{2}} \right)$
$\left[ {0,\frac{\pi }{2}} \right)$
$\left[ {0,\pi } \right]$
$\;\left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)$
Set $A$ has $3$ elements and set $B$ has $4$ elements. The number of injection that can be defined from $A$ to $B$ is
The domain of the function $f(x)=\frac{1}{\sqrt{[x]^2-3[x]-10}}$ is (where $[x]$ denotes the greatest integer less than or equal to $x$ )
solve $\frac{{1 - \left| x \right|}}{{2 - \left| x \right|}} \ge 0$
If for the function $f(x) = \frac{1}{4}{x^2} + bx + 10$ ; $f\left( {12 - x} \right) = f\left( x \right)\,\forall \,x\, \in \,R$ , then the value of $'b'$ is
Domain of $f (x)$ = $\sqrt {{{\log }_2}\left( {\frac{{10x - 4}}{{4 - {x^2}}}} \right) - 1} $ , is